PART-A (PHYSICS)

01. Solution.

Let $OP = r$. Angular speed about the origin = V_{p_0} $\omega = \frac{|\mathbf{r}_{p_0}|_{\perp}}{|\vec{r}|}$, where $|V_{p_0}|_{\perp}$ = The component of

velocity of P w.r.t O perpendicular to OP.

$$
\Rightarrow \omega = \frac{v \sin \theta}{r} \text{ where } r = b \text{ cosec } \theta
$$

$$
\omega = \frac{v \sin^2 \theta}{b}
$$

02. Solution.

Time taken in moving distance S along smooth

inclined surface with inclination θ is t_s

$$
= \sqrt{\frac{2S}{g\sin\theta}}
$$

And time taken in moving distance S along smooth inclined surface with inclination θ is

$$
t_r = \sqrt{\frac{2S}{g(\sin\theta - \mu\cos\theta)}} = nt_s
$$

Using the expression obtained above

$$
\frac{1}{\eta} = \sqrt{1 - \mu \cot \theta} \Rightarrow \mu \cot \theta = 1 - \frac{1}{n^2} \Rightarrow \mu = \left(1 - \frac{1}{n^2}\right) \tan \theta
$$

03. Solution.

The velocity of both the bodies m & M are equal. If the block M sticks to the wall, the block m will continue to move which compresses the spring through x. The K.E. of the block m will be converted into the potential energy of the spring as it compresses the spring. Conservation of energy yields

$$
\frac{1}{2}mv^2 = \frac{1}{2}kx^2 \Rightarrow x = v\sqrt{\frac{m}{k}}
$$

where $\frac{1}{2}(M+m)v^2 = E$
 $\Rightarrow v = \sqrt{\frac{2E}{(M+m)}} \quad \therefore x = \sqrt{\frac{2mE}{(M+m)k}}$

04. Solution.

by conservation of linear momentum along the line of collision (along the line joining the centers of two spheres), $m_1u \sin\theta = m_2v$

Since, Coefficient of restitution for oblique colli-

sion,
$$
e = -\frac{v_2 - v_1}{u_2 - u_1}\Big|_{\text{along the line of collision}}
$$

$$
\Rightarrow e = \frac{v}{u \sin \theta} = \frac{m_1}{m_2} = \frac{2}{3}
$$

05. Solution.

$$
I_{\text{remaining}} = I_{\text{whole}} - I_{\text{removed}}
$$

or
$$
I = \frac{1}{2}(9M)(R^2) - \left[\frac{1}{2}m\left(\frac{R}{3}\right)^2 + \frac{1}{2}m\left(\frac{2R}{3}\right)^2\right]
$$

......(i)

Here,
$$
m = \frac{9M}{\pi R^2} \times \pi \left(\frac{R}{3}\right)^3 = M
$$

Substituting in Eq. (i), we have

 $I = 4MR^2$

06. Solution.

The gravitational potential at a point $Q Q(OQ = x)$ is given by :

$$
V(x) = \begin{cases} -g_s R \left(\frac{3}{2} - \frac{1}{2} \frac{x^2}{R^2} \right), & \text{where } x < R \\ -g_s R \left(\frac{R}{x} \right), & \text{when } x > R \end{cases}
$$

The energy required to project the body, to a maximum altitude of 3R from its surface, is :

$$
m\left(V_B\left|_{x=\frac{R}{2}}-V_P\right|_{x=4R}\right) = \frac{9}{8}mg_sR
$$

07. Solution.

$$
h = \frac{2T\cos\theta}{r\rho g} \Rightarrow T = \frac{hr\rho g}{2\cos\theta} \text{ or } T\alpha \frac{h\rho}{\cos\theta}
$$

$$
\frac{T_w}{T_{Hg}} = \frac{h_1}{h_2} \times \frac{\cos\theta_2}{\cos\theta_1} \times \frac{\rho_1}{\rho_2}
$$

Putting the values, we obtain 1 : 65

08. Solution.

$$
\Delta Q = nC_p \Delta T = 2\left(\frac{3}{2}R + R\right)\Delta T
$$

$$
= 2\left[\frac{3}{2}R + R\right] \times 2 \times \frac{5}{2} \times 8.31 \times 5
$$

$$
= 208 \text{ J}.
$$

Piprali Road, Sikar -332001 (Rajasthan), Contact No. 1800-123-8588, 8875023160, 8875023161, 8875023162 Email : kautilyaiitacademy@gmail.com

09. Solution.

When two gases are mixed together then

Heat lost by the Helium gas $=$ Heat gained by the Nitrogen gas

$$
\mu_{\text{B}} \times (C_{\text{v}})_{\text{He}} \times \left(\frac{7}{3}T_0 - T_{\text{f}}\right) = \mu_{\text{A}} \times (C_{\text{v}})N_2 \times (T_{\text{f}} - T_0)
$$

 $Box A$

$$
\operatorname{Box} B
$$

1 mole N_2 Temperature = T_0

1 mole *He*
Temperature =
$$
\frac{7}{3}T_0
$$

$$
\Rightarrow 1 \times \frac{3}{2} R \times \left(\frac{7}{3} T_0 - T_f\right) = 1 \times \frac{5}{2} R \times (T_f - T_0)
$$

By solving we get $T_f = \frac{3}{2}T_0$ 2 $=$

10. Solution.

Potential energy of the particle $U = k(1-e^{-x^2})$

Force on particle
$$
F = \frac{-dU}{dx} = -k[-e^{-x^2} \times (-2x)]
$$

\n $F = -2kxe^{-x^2} = -2kx\left[1 - x^2 + \frac{x^4}{2!} - \dots \right]$

For small displacement $F = -2kx$

 \Rightarrow F \propto -x i.e. motion is simple harmonic motion

11. Solution.

By solving we get
$$
I_f = \frac{1}{2}I_0
$$

\nPotential energy of the particle U = k(1-e^{-x2})
\nForce on particle F = $\frac{-dU}{dx} = -k[-e^{-x^2} \times (-2x)]$
\n13. Solution.
\nF = $-2kxe^{-x^2} = -2kx\left[1-x^2 + \frac{x^4}{2!} -\right]$
\nFor small displacement F = $-2kx$
\n $\Rightarrow F \propto -x$ i.e. motion is simple harmonic motion
\nSolution.
\n41. Solution.
\n $\phi(x,y,z) = ax^2$
\n $\vec{E} = -2ax\hat{i}$
\n $\int \vec{E} \cdot d\vec{s} = (2aL\hat{i})(-L^2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore $\vec{E} = -2a(1)\hat{i} \cdot (L_2\hat{i}) = -2aL^3$
\n \therefore <

each of the other faces

$$
\therefore \oint \vec{E} \cdot d\vec{s} = -4aL^3 = \frac{q}{\epsilon_0}
$$

$$
\therefore q = -4a \epsilon_0 L^3
$$

12. Solution.

$$
\frac{3Q}{2} \left[\frac{2}{2} \left(\frac{2}{2} \frac{3Q}{2} \right) \frac{3Q}{2} \right] \left[\frac{3Q}{2} \left(\frac{2}{2} \frac{Q}{2} \right) \right]
$$
\n
$$
q_{1} + q_{2} = 2Q
$$
\n
$$
V_{AB} = V_{AC} \Rightarrow \frac{q_{1}}{c_{1}} = \frac{q_{2}}{c_{2}}
$$
\nSolving, we get $q_{1} = \frac{4Q}{3}, q_{2} = \frac{2Q}{3}$
\n
$$
= -\frac{Q}{2} - (-q_{1}) = -\frac{Q}{2} + \frac{4Q}{3} = 5Q / 6
$$

13. Solution.

Here, both Assertion and Reason are correct, and reason is the correct explanation of assertion.

14. Solution.

$$
X = C \times \frac{1}{T}, C = \frac{0.4}{7 \times 10^{-8}} = 57 \text{ K}
$$

15. Solution.

$$
\begin{array}{ccc}\n1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1\n\end{array}
$$

16. Solution.

$$
Z = \sqrt{(R)^{2} + (X_{L} - X_{C})^{2}}
$$

R = 10 Ω , $X_{L} = \omega L = 2000 \times 5 \times 10^{-3} = 10 \Omega$

$$
X_{\rm C} = \frac{1}{\omega_{\rm C}} = \frac{1}{2000 \times 50 \times 10^{-6}} = 10 \,\Omega
$$
i.e. $Z = 10 \,\Omega$

Maximum current $i_0 = \frac{V_0}{Z} = \frac{20}{10} = 2A$ \overline{Z} – $\overline{10}$ $=\frac{V_0}{I_0}=\frac{20}{10}=2$

Hence
$$
i_{\text{rms}} = \frac{2}{\sqrt{2}} = 1.4
$$
A

and
$$
V_{\text{rms}} = 4 \times 1.41 = 5.64 \text{ V}
$$

17. Solution.

The equation of electric field occurring in Y direction

$$
E_y = 66 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)
$$

Therefore, for the magnetic field in Z - direction

$$
B_z = \frac{E_y}{c}
$$

= $\left(\frac{66}{3 \times 10^8}\right) \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$
= $22 \times 10^{-8} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$

18. Solution.

$$
\therefore \beta - \frac{D\lambda}{d} \Rightarrow \text{for } \beta_{\text{max}}, \text{'d' will be min} - 2d_0 - d_0 - d
$$

And for β_{min} ,'d' will be max = 2d₀ | d₀ = 3d₀

$$
\begin{aligned}\n\therefore \beta_{\text{max}} &= \frac{D\lambda}{d} \Rightarrow \text{and} \beta_{\text{min}} = \frac{D\lambda}{3d_0} \\
\therefore \beta_{\text{max}} - \beta_{\text{min}} &= \frac{D\lambda}{d_0} \left(1 - \frac{1}{3} \right) \left(\frac{2D\lambda}{3d_0} \right)\n\end{aligned}
$$

19. Solution.

Conceptual

20. Solution.

Young's modulus
$$
Y = \frac{FL}{AI} = \frac{4FL}{\pi d^2 l}
$$

\n
$$
= \frac{(4)(1.0 \times 10.0)(2)}{\pi (0.4 \times 10^{-3})^2 (0.8 \times 10^{-3})}
$$
\n
$$
= 2.0 \times 10^{11} \text{ NM}^{-2}
$$
\nFurther,
\n
$$
\frac{\Delta Y}{Y} = 2\left(\frac{\Delta d}{d}\right) + \left(\frac{\Delta l}{l}\right)
$$
\n
$$
\therefore \quad \Delta Y = \left\{2\left(\frac{\Delta d}{d}\right) + \left(\frac{\Delta l}{l}\right)\right\} Y
$$
\n
$$
= \left\{2 \times \frac{0.01}{0.4} + \frac{0.05}{0.8}\right\} \times 2.0 \times 10^{11}
$$
\n
$$
= 0.2 + 10^{11} \text{ Nm}^{-2}
$$
\nOr $(Y \pm \Delta Y) = (2 \pm 0.2) \times 10^{11} \text{ Nm}^{-2}$

21. Solution.

T–R = 3ma and R = ma \Rightarrow T = 4ma

$$
a = \frac{g}{f} = 2
$$

5

Hence acceleration of B w.r.t ground is $2\sqrt{2}$ m/s².

22. Solution.

23. Solution.

Let the frictional force be in the forward direction, then

$$
f = Ma_0
$$

and $fR = \frac{MR^2}{2} \alpha_0$

$$
a_0 = \frac{f}{M} \text{ and } \alpha_0 = \frac{2f}{MR}
$$

For pure rolling, $\alpha_0 + R\alpha_0 = \alpha$

$$
\therefore \frac{f}{M} + \frac{2f}{M} = \alpha \Rightarrow f = \frac{Ma}{3}
$$

For pure rolling, $f \le fL = \mu Mg$

$$
\frac{Ma}{3} \le \mu Mg \Rightarrow a \le 3\mu g : a_{max} = 9m/s^2
$$

24. Solution.

Slope of line $A = \frac{(1006 - 1000)mm}{T^2} = \frac{\Delta L}{\Delta T} = L\alpha_A$ $\overline{\text{T}^{\circ}\text{C}}$ - $\overline{\Delta T}$ - $=\frac{(1006-1000)\text{mm}}{T^{\circ}\text{C}}=\frac{\Delta L}{4T}=L\alpha_{A}$ \overline{C} = $\overline{\Delta T}$

i.e.,
$$
\frac{6}{T}
$$
 mm/°C = (1000 mm) α A (i)

Similarly, for line B,

$$
\frac{2}{T} \text{ mm} / \text{°C} = (1002 \text{ mm}) \text{ }\alpha\text{B} \qquad \text{(ii)}
$$

Dividing Eq. (i) by Eq. (ii) ,

$$
3 = \frac{1000 \alpha_A}{1002 \alpha_B} = \alpha_A = 3\alpha_B
$$
 (iii)

From Eq. (iii), $\alpha A = 3 \times 9 \times 10^{-6} = 27 \times 10^{-6}$ °C

25. Solution.

As the tension in string Y is increased hence it's frequency will increase. But as given, beat frequency is decreased so, in the beginning $n_x - n_y =$ $4 \implies 300 - n_{y} = 4 \implies n_{y} = 296 \text{ Hz}$

26. Solution.

The given circuit can be redrawn as follows

Resistance between A and B =
$$
\frac{24 \times 8}{32} = 6\Omega
$$

Current between A and $B =$ Current between X

and Y =
$$
i = \frac{48}{6} = 8A
$$

Resistance between X and Y = $(3 + 10 + 6 + 1) = 20 \Omega$ \Rightarrow Potential difference between X and Y = 8 × 20 = 160V 27. Solution.

$$
\frac{1}{f_{eq}} = \frac{1}{f_1} + \frac{1}{f_2} \Rightarrow \frac{1}{f_1} = \frac{(\mu_1 - \mu)}{\mu} \left[\frac{2}{R} \right] = \frac{(\mu_1 - 4)}{4} \left[\frac{2}{R} \right] = \frac{3\mu_1 - 4}{2R}
$$

$$
\frac{1}{f_2} = -\left[\frac{\mu_2 - \mu}{\mu} \left(\frac{2}{R} \right) \right] = -3 \left[\frac{\mu_2 - \mu}{2R} \right]
$$

$$
\frac{1}{24} = \frac{3(\mu_1 - \mu_2)}{2R} \Rightarrow \mu_1 - \mu_2 = \frac{2R}{24 \times 3} = \frac{R}{12 \times 3} = \frac{20}{36} = \frac{5}{9}
$$

28. Solution.

As the current depends on the number of photons incident. Now by inverse square law,

$$
12 \propto \frac{1}{(0.2)^2} \text{ and } 1 \propto \frac{1}{(0.4)^2}
$$

$$
\therefore \frac{l}{12} = \frac{(0.2)^2}{(0.4)^2} = \frac{1}{4}
$$

or
$$
I = \frac{12}{4} = 3 \text{ mA}
$$

29. Solution.

Current in $R_1 = 5/500 = 10$ mA and current in $R_2 = 10/5$ 1500=20/3 mA , hence the current in Zener Diode=10/3 mA

30. Solution.

Since there is no shunt resistance, $I = 9 \times 60 \mu A$

$$
\therefore \frac{6}{11000 + G} = 540 \times 10^{-6} \Rightarrow G = \frac{1000}{9}
$$

Since for half deflection,

$$
G = \frac{RS}{R - S} \Rightarrow \frac{1000}{9} = \frac{11000S}{11000 - S} \Rightarrow S = 110 \Omega
$$

PART-B CHEMISTRY

- 31. A) $SO_3 \& CO_3$; Both are $sp^2 \&$ planar triangular B) SO_3^{2-} & NH₃; Both are sp^3 & pyramidal C) PCl_s : sp³d & trigonal bipyramidal $POCl.$: sp³ & tetra hedral D) XeF_2 : sp³d & linear $CIF_1: sp^3d \& T$ -shape
- **32.** Sol. B_2 : By distribution 10 electrons only two electrons in π - B.M.O are extra left without cancelling with A.B.M.O electrons N_2 : By distribution 14 electrons only 4 electrons & 2 electrons in B M O & extra left without cancelling

with ABM O electrons

Piprali Road, Sikar -332001 (Rajasthan), Contact No. 1800-123-8588, 8875023160, 8875023161, 8875023162 Email : kautilyaiitacademy@gmail.com

35. Sol.

0.1 moles of the complex -28.7 g of AgCl 1 mole gives of complex 287 g of AgCl

- 2 moles of AgCl
- \Rightarrow 2 Cl ions should be ionisable.
- 36. Sol. The complex cannot show hydration isomerism as no H2O ligands are present.
- 37. Sol. The colour of $KMnO₄$ is due to charge transfer phenomenon

38. Sol.

$$
n_{m,eq}NH_3 = n_{m,eq}H_2SO_4
$$

= 10 × 1 × 2 = 20 *m* eq of NH₃ = 20 m mol of NH₃

$$
\%N = \frac{1400 × n_{eq}NH_3}{wt. of organic compound}
$$

$$
= \frac{1400 × 20 × 10^{-3}}{0.5} = 56\% .
$$

39. Sol.

- 40. Sol. Reactivity order $IV > I > III > II > V$ on the basis of R and I effect of associated groups.
- 41. Sol.

$$
A = \bigodot H_2 - CH = CH_2
$$
 Friedal - craft's a
klylation
B =
$$
\bigodot H_2 CH_2 CH_2 CH_2 OH
$$
 Hydroboration -oxidation

- 43. Sol. Cleavage of the double bond by Ozonolysis, iodoform Rxn, dry distillation of calcium salts to give cyclopentanone, followed by wolf–kishner reduction to give cyclohexane.
	- Sol. Benzyllic oxidation to give potassium salt of Benzoic acid, followed by acidification to give Benzoic acid.

46. Sol. Keratin and myosin are fibrous proteins and insoluble in H₂O.

47. Sol.

$$
(61.9 + 76.3) = \frac{1.382 \times 10^{-4} \times 1000}{S}
$$

:. S = 10⁻³ M.

42. Sol.

49. Sol.

Required energy =
$$
I_1 + I_2
$$

$$
I_1 = 24.6eV
$$

$$
I_2 = I_H \times Z^2 = 13.6 \times 2^2 = 54.4eV
$$

$$
\therefore E = 24.6 + 54.4 = 79eV
$$

50. Sol.

$$
3A \rightarrow B
$$

t = 4 min; a - 3x = x

$$
\Rightarrow 4x = a \Rightarrow x = \frac{a}{4}
$$

 \therefore At 4 min 75% of first order is completed.

$$
\therefore t_{75\%} = \frac{2t_1}{2} \Longrightarrow \frac{t_1}{2} = 2 \min.
$$

51. Sol.

$$
X=12\big(Mg); Y=15(P)
$$

54. Sol.

 θ

Except $-C-O-R$, remaining are ring activating groups.

55. Sol.

$$
H_{2(g)} \rightarrow 2H_{(aq)}^{+} + 2e^{-}
$$

0.413 = $-\frac{0.059}{2} \log \left[H^{+}\right]^{2}$
 $\Rightarrow pH = 7$.

58. Sol.

$$
E^0 = E^0_{A g^+/A g} + 0.06 \log K_{sp}
$$

59. Sol.

Number of moles of $CH_3COOH = 0.25 \times 0.3 = 0.075$ moles Number of moles of $CH_3COO^- = 0.56 \times 0.3 = 0.168$.. Number of moles of CH_3COO^- left = 0.168 - 0.006 = 0.162 Final number of moles of $CH_3COOH = 0.075 + 0.006 = 0.081$:. $pH = 4.7 + \log \frac{0.162}{0.081}$

PART-C (MATHEMATICS)

61. Solution.

Given set A with equation $|x+1| \leq 2$ and set B with equation $|x-1| \geq 2$. $A : x \in (-3,1)$

$$
B: x \in (-\infty, -1] \cup [3, \infty)
$$

Take, B – A = (–∞, –3] ∪ [3,∞) = R – (–3,3) also,
A ∩ B = (–3, –1)

62. Solution.

We have R = $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$ $R^{-1} = \{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$ Hence, RoR⁻¹= {(3,3),(3,5),(5,3),(5,5)}

63. Solution.

Mean
$$
\frac{504 + 3a + 9b}{26 + a + b} = \frac{309}{22}
$$

$$
\Rightarrow 243a + 111b = 3054
$$

$$
\Rightarrow 81a + 37b = 1018
$$
........(i)

Median class is
$$
12 - 18
$$

Now, median
$$
12 + \frac{a+b+26}{2} - (a+b)
$$

12 $\times 6 = 14$

a b 26 2a – 2b 4 a b 18(ii) 2

On solving eqs. (i) and (ii), we get $a = 8$, $b = 10$

64. Solution.
\n
$$
\mu = \sum x_i P(x = x_i) = 3.24
$$
\n65. Solution.
\n
$$
f(x) = -\int_0^x f(t) \tan t dt + \int_0^x \tan (t - x) dt
$$
\n
$$
f(x) = -\int_0^x f(t) \tan t dt + \int_0^x \tan (-t) dt
$$
\n
$$
(\text{use } f(a - x) = f(x))
$$
\n
$$
f(x) = -\int_0^x f(t) \tan t dt = \int_0^x \tan(t) dt
$$
\nDifferentiating w.r.t x, we have\n
$$
f(x) = -f(x) \tan x - \tan x
$$
\n
$$
\frac{dy}{dx} = -(\tan x) y - \tan x
$$
\n
$$
\frac{dy}{dx} + (\tan x) y = -\tan x
$$
\n
$$
IF = e^{\int \tan x dx} = e^{\log \sec x} = \sec x
$$
\nTherefore, solution is y. sec x =
\nsec x = -\int sec x \tan x c
\nor y sec x = - sec x + c
\nor y = c cos x - 1
\nCurve passes through (0,0)
\n $\therefore 0 = c - 1$ or $c = 1$
\n $\therefore y = \cos x - 1$

Therefore, the maximum value of y is 0.

66. Solution.

We have

In S_1 units place can have 1 or 3 or 5

In S₂ it is
$$
5C_3 \times 3 \times \frac{4!}{2!} + 5C_2(9 \times 2 + 6) = 600
$$

67. Solution.

Let the probability of the faces 1,3,5 or 6 is p for each face.

Hence the probability of the faces 2 or 4 is 3p, therefore

$$
4p + 6p = 1 \Rightarrow p = \frac{1}{10}
$$

P(1) = P(3) = P(5) = P(6) = $\frac{1}{10}$
P(2) = P(4) = $\frac{3}{10}$

P (total of 7 with a draw of dice) = P $(16,61,25,52)$

$$
=2\left(\frac{1}{10}\cdot\frac{1}{10}\right)+2\left(\frac{3}{10}\cdot\frac{1}{10}\right)+2\left(\frac{3}{10}\cdot\frac{1}{10}\right)
$$

$$
=\frac{2+6+6}{100}=\frac{14}{100}=\frac{7}{50}
$$

68. Solution.

Apply condition for externally touching circle.

69. Solution.

The hyperbola
$$
\left(\frac{x-\sqrt{2}}{4}\right)^2 - \frac{\left(y+\sqrt{2}\right)^2}{2} = 1
$$

a = 2, b = $\sqrt{2}$, e = $\sqrt{\frac{3}{2}}$

If D be the centre, then DC = $ae = \sqrt{6}$ and DA = $a = 2$ $AC = \sqrt{6} - 2$ and $BC = \frac{b^2}{a} = 1$ $=\sqrt{6}-2$ and BC = $\frac{b}{c}$ = 1

Now area of $\triangle ABC = \frac{1}{2}(AC)(BC) = \sqrt{\frac{3}{2}} - 1$ $\sqrt{2}$ ^(AC)(BC) – $\sqrt{2}$ – $\triangle ABC = \frac{1}{2}(AC)(BC) = \sqrt{2}$

70. Solution.

Use $\overline{r} \cdot \overline{a} = 0$ $\overline{r} \cdot \overline{b} = 0$ where $\overline{v} = x\hat{i} + y\hat{j} + z\hat{k}$ And $\overline{x} \cdot \hat{i} = 21$

71. Solution.

For option (1)
$$
P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = P(A) = \frac{1}{3}
$$

Similarly
$$
P\left(\frac{A'}{B'}\right) = P(A') = \frac{2}{3}
$$

\n
$$
P\left(\frac{A}{B'}\right) = \frac{P(A)(1 - P(B))}{(1 - P(B))} = \frac{\frac{1}{3} \cdot \frac{5}{6}}{\frac{5}{6}} = \frac{1}{3}
$$
\n
$$
P\left(\frac{A}{A \cup B}\right) = \frac{P(A \cap (A \cup B))}{P(A \cup B)}
$$
\n
$$
= \frac{P(A)}{P(A \cup B)} = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{6} - \frac{1}{18}}
$$
\n
$$
= \frac{6}{6 + 3 - 1} = \frac{3}{4}
$$

72. Solution.

$$
x^{2} + 5^{\frac{1}{2}} = -(20)^{\frac{1}{4}}x \Longrightarrow (x^{2} + \sqrt{5})^{2} = \sqrt{20} x^{2}
$$

\n
$$
\Longrightarrow x^{4} + 5 + 2\sqrt{5}x^{2} = 2\sqrt{5}x^{2} \Longrightarrow x^{4} - 5 \Longrightarrow x^{8} = 25
$$

\nSo, $\alpha^{8} + \beta^{8} = 50$

73. Solution.

If we write the elements of $A + A$. We can certainly find 39 distinct element as

 $1 + 1$, $1 + a_1$, $1 + a_2$ $1 + a_{18}$, $1 + 77$, $a_1 + 77$, $a_2 +$ $77,...a_{18} + 77,77 + 77$

It means all other sums are already present in these 39 values, which is only possible in case when all numbers are in A.P.

Let the common difference be 'd'

$$
77 = 1 + 19 d \Rightarrow d = 4
$$

So,
$$
\sum_{i=1}^{18} a_i = \frac{18}{2} [2a_1 + 17d] = 9[10 + 68] = 702
$$

PQ is focal chord.

74. Solution.

$$
\overline{\beta_1} = i\overline{\alpha} \qquad \overline{\alpha} \cdot \overline{\beta_2} = 0
$$
\n
$$
\overline{\beta} = \overline{\beta_1} + \overline{\beta_2}
$$
\nTaking dot with $\overline{\alpha}$
\n
$$
\overline{\alpha} \cdot \overline{\beta} = \overline{\alpha} \cdot \overline{\beta_1} + \overline{\alpha} \cdot \overline{\beta_2}
$$
\n
$$
4 + 6 - 20 = \overline{\alpha} \cdot 1\overline{\alpha} + 0 \qquad -10 = t |\overline{\alpha}|^2
$$
\n
$$
-10 = t(16 + 9 + 25) \qquad \therefore t = \frac{-1}{5}
$$
\n
$$
\therefore \overline{\beta} = -\frac{1}{5}\overline{\alpha} + \beta_2 \qquad \therefore \overline{\beta_2} = \overline{\beta} + \frac{1}{5}\overline{\alpha}
$$
\n
$$
= (\overline{i} + 2\overline{j} - 4\overline{k}) + \frac{1}{5}(4\overline{i} + 3\overline{j} + 5\overline{k}) = \frac{9\overline{i} + 13\overline{j} - 15\overline{k}}{5}
$$
\n
$$
5\overline{\beta_2} \cdot (\overline{i} + \overline{j} + \overline{k}) = (9\overline{i} + 13\overline{j} - 15\overline{k}) \cdot (\overline{i} + \overline{j} + \overline{k}) = 9 + 13 - 15 = 7
$$

75. Solution.

 ${x+b} = {x}$ where b is an integer

$$
\therefore [x] + \sum_{b=1}^{1000} \frac{\{a+b\}}{1000} = [x] + \frac{1000\{x\}}{1000}
$$

$$
= [x] + \{x\} = x
$$

76. Solution.

 $A(1, 0, 7) B(1, 6, 3)$

Midpoint of $AB = (1, 3, 5)$ lies in the line

DR's of AB $(0, 6, -4)$ the line passing through A

and B is perpendicular to the given line hence B in the mirror image.

SOLUTION) ITS - 2024
 ITS - 2024
 Statement II is also true but not a correct explanation of I as there are infinitely many lines passing through the midpoint of the line segment and one of the lines is perpendicular bisector

77. Sol.

Motion Test – 17

and B is perpendicular to the given line hence B in

the mirror image.

Statement II is also true but not a correct explana-

tion of I as there are infinitely many lines passing

through the midpoint $\frac{p!q!r!}{p!q!r!}$ (2x) (-y) (2) $-\frac{p!q!r!}{p!q!r!}$ $(-y)^{q}(z)^{r} = \frac{20!}{(1+i)^{r}} 2^{p}(-1)$ $p + q + r = 20$ $q = 0$ $p + r = 20 p$ भि खपक्व r युपभ नक् \hat{H} + युपम = मि (मज्पज गनजब नपक मिचप नक्) ∴ ह्यापपतमपुप्धस्त नक 78. Sol. Put $Z = x + iy$ $x^{2} - y^{2} + 2ixy + \alpha x + \alpha iy + \beta = 0$ Put $v = \pm 2$ $x^2 - 4 + \alpha x + \beta + i (2x + y + \alpha y) = 0$ So $x^2 + \alpha x + \beta - 4 = 0$ and $2xy + \alpha y = 0$

$$
\alpha = -2x \text{ Put}
$$

x² - 2x² + \beta - 4 = 0
x² = \beta - 4

$$
\beta \ge 4
$$

Minimum value of $\beta = 4$

79. Solution.

Here, $3 \sin^2 \theta = \cos 2 \phi$ and $3 \sin \theta$. $\cos \theta = \sin 2 \phi$. Squaring and adding, $9 \sin^2\theta (\sin^2\theta + \cos^2\theta) = 1$

i.e.
$$
\sin \theta = \frac{1}{3}
$$
 and $\cos \theta = \frac{2\sqrt{2}}{3}$
\n $\therefore \cos 2\phi = 3 \cdot \frac{1}{9} = \frac{1}{3}$ and $\sin 2\phi = \frac{2\sqrt{2}}{3}$
\n $\therefore \cos(\theta + 2\phi) = \cos \theta \cdot \cos 2\phi - \sin 2\phi$
\n $= \frac{2\sqrt{2}}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{2\sqrt{2}}{3} = 0$ and $\theta + 2\phi < \frac{3\pi}{2}$
\n $\therefore \theta + 2\phi = \frac{\pi}{2}$

80. Solution.

$$
m_1 m_2 = -1
$$

\n
$$
\Rightarrow \left(\frac{y+5}{x-8}\right)\left(\frac{y}{x}\right) = -1
$$

$$
\implies x^2 + y^2 - 8x + 5y = 0
$$

81. Solution.

f'(x) = 3x² + 3 > 0
\n∴ f(x) is increasing
\n
$$
\frac{a}{1-r} = f(3) = 27 \ f'(0) = 3; a(1-r) = 3
$$

$$
a^2 = 81 \qquad \Rightarrow a = 9 \qquad r = \frac{2}{3}
$$

82. Solution.

$$
= 3 (1) + 5(2) + 7(3) + 9 (4) + 11(5) + 13(6) + 15(7) + 17(8) + 19(9) + 21(10)
$$

=
$$
\sum_{r=1}^{10} (2r + 1)r = 825
$$

83. Solution.

$$
\begin{aligned}\n\text{Lt f(x)} &= \text{Lt} \frac{\left(\frac{2^x - 1}{x}\right)^3}{(\log 2) \left(\frac{\sin(x \log 2)}{\log 2}\right) \frac{\log(1 + x^2 \log 4)}{x^2 \log 4} \cdot \log 4} \\
&= \frac{(\log 2)^3}{(\log 2)(2 \log 2)} = \frac{1}{2} \log 2 \\
&\therefore \left[\frac{1}{2} \log 2\right] = 0\n\end{aligned}
$$

84. Solution.

$$
a2e2 = 36
$$

\n
$$
\Rightarrow a2 - b2 = 36
$$
(1); 4ab = ?
\nUsing r = (s – a) tan^A⁄₂ in $\triangle OCF$
\n1 = (s–a) tan45° where a = CF

Or
$$
2 = 2s - 2a = 2s - AB
$$

\nOr $2 = (OF + FC + CO) - AB$
\n $2 = 6 + \frac{AB}{2} + \frac{CD}{2} - AB$

$$
\frac{\text{AB}-\text{CD}}{2} = 4 \Rightarrow 2(a-b) = 8 \Rightarrow a-b = 4
$$

....................(2)

From (1) and (2)

$$
a + b = 9 \Rightarrow 2a = 13; 2b = 5 \Rightarrow (AB)(CD) = 65
$$

85. Solution.

Let
$$
f(x) = x^3 + ax^2 + bx + c
$$

\n $f'(x) = 3x^2 + 2ax + b \Rightarrow f'(1) = 3 + 2a + b$
\n $f''(x) = 6x + 2a \Rightarrow f''(2) = 12 + 2a$
\n $f'''(x) = 6 \Rightarrow f'''(3) = 6$
\n $\because f'(1) = x^3 + f'(1)x^2 + f''(2)x + f'''(3)$
\n $\Rightarrow f'(1) = a \Rightarrow 3 + 2a + b = a \Rightarrow a + b = -3$
\n......(1)
\n $\Rightarrow f''(2) = b \Rightarrow 12 + 2a = b \Rightarrow 2a - b = -12$
\n......(2)
\nFrom (1) and (2)
\n $3a = -15 \Rightarrow a = -5 \Rightarrow b = 2$
\n $\Rightarrow f(x) = x^3 - 5x^2 + 2x + 6$
\n $\Rightarrow f(2) = 8 - 20 + 4 + 6 = -2$

86. Solution.

 $2 = 2$ (s–a)

 $f(x)$ a

 $I = \int_{0}^{a} \frac{f(x)}{1 + f(x)} \implies I = \int_{0}^{a} \frac{g(x)f(x)dx}{1 + f(x)}$ $\frac{1}{1+g(x)}$ \rightarrow $\frac{1-1}{1+g(x)}$ $=\int_{-a}^{a} \frac{f(x)}{1+g(x)} \Rightarrow I = \int_{-a}^{a} \frac{g(x)f(x)}{1+g(x)}$

 $\frac{1}{a}$ 1 + $g(x)$ $\frac{1}{a}$

Using King

Eqn. (1) + Eqn. (2)

 $\mathbf a$ a a $\mathbf a$ $\Rightarrow 2I = \int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx \Rightarrow I = \int_{0}^{a} f(x)dx = 10$

$$
=\frac{1}{2}\left[\left[(x_1-x_2)99\right]\right]
$$

KAUTILYA
 IT JEE ACADEMY
 IT JEE ACADEMY

DEPENDENCE SOLUTION)
 $\begin{bmatrix}\n\text{I} & \text{II} \\
\text{I} & \text{II}\n\end{bmatrix}$
 $\begin{bmatrix}\n\text{II} & \text{II}\n\end{bmatrix}$
 $\begin{bmatrix}\n\text{II} & \text{II}\n\end{bmatrix}$
 $\begin{bmatrix}\n\text{II} & \text{II}\n\end{bmatrix}$
 $\begin{bmatrix}\n\text{II} & \text{II}\n\end{$ Area is an integer. Then both x_1 and x_2 are simultaneously either even or odd.

Hence,
$$
{}^{10}C_2 + {}^{10}C_2 = 2.{}^{10}C_2 = 90
$$

87. Solution.

 $K = 3! \times 3! \times 1 = 36$

 $P = 6! \times 3! \times 6! = 6! \times 7 = 5040$

88. Solution.

The probability of drawing one white balls and one

green ball from the first urn is 1 5

The probability of drawing one white ball and one

green ball from the second urn is 1 3

The probability of drawing one white ball and one

green ball from the third urn is 2 $\frac{1}{11}$,

Therefore, the probability that the third urn was

chosen is
$$
\frac{\frac{2}{11}}{\frac{1}{5} + \frac{1}{3} + \frac{2}{11}} = \frac{15}{59} = \frac{a}{b}
$$

Hence
$$
15 + 59 = 74
$$

89. Solution.

The point inside the quadrilateral ACBP which is equidistant from all the four vertices is the centre M (6.8) of the circle described on PC as diameter. Hence , distance from origin to the point M is

$$
\sqrt{36+34} = \sqrt{100} = 10
$$

90. Solution.

$$
f(-x) = f(x), g(x), g(x) g(-x)=1
$$

$$
\int_{0}^{a} f(x) dx = 10 \qquad I = \int_{-ax}^{a} \frac{f(x)}{1 + g(x)} dx
$$

Piprali Road, Sikar -332001 (Rajasthan), Contact No. 1800-123-8588, 8875023160, 8875023161, 8875023162 Email : kautilyaiitacademy@gmail.com